

e liège est l'écorce de l'arbre
"Quercus Suber L" qui est
communément appelé Chêne-Liège. Ses propriétés proviennent
naturellement de sa structure et de
la composition chimique de ses
membranes cellulaires.

Dans sa structure nid d'abeilles chaque centimètre cube contient entre 30 à 42 millions de cellules. Elle est organisée en cinq couches, deux de cellulose qui recouvrent les cellules remplies de gaz, deux autres en matière dure et imperméable (subérine et cire) et une cinquième ligneuse dont la fonction est de maintenir la structure et assurer la rigidité.

Ce sont ces quelques facteurs qui donnent au liège ses remarquables et très utiles qualités.

Valeurs d'isolement thermiques

(R en m² K/W et K en W/m²K)

(it cit iii 10 vv ee it cit vv/iii it)		
Épaisseur	R	K
10 mm	0,25	2,439
20 mm	0,50	1,595
25 mm	0,625	1,2739
30 mm	0,75	1,0989
40 mm	1	0,8620
50 mm	1,25	0,709
60 mm	1,50	0,602
70 mm	1,75	0,523
80 mm	2,00	0,4629
90 mm	2,25	0,4149
100 mm	2,50	0,3759

Caractéristiques Techniques

Masse Volumique	environ 120 Kg/m³
Conductibilité Thermique	0,037/0,040 w/mk
Résistance à la traction normale au plan de la plaque	0,94 Kg/cm ²
Résistance à la flexion	1,8 Kg/cm ²
Résistance à la compression	0,2 Kg/cm ²
Limite d'élasticité	1 Kg/cm ²
Tension de compression	1,78 Kg/cm ²
Chaleur spécifique	1,67 Kj/Kg °C
Résistance à la diffusion de la vapeur d'eau	u5-30
Température d'utilisation	-200°C à 130°C
Rigidité dynamique (par 50 mm de Épaisseur)	126 N/cm ³
Module d'élasticité	5 N/mm ²
Conductibilité à la vapeur	0,017 à 0.003 g/ mh mm de section
Coefficient de dilatation thermique	25 à 50 x 10 ⁻⁶
Stabilité des dimensions	Stable - ni se contracte pas ni se dilate pas
Dimensions des plaques	1000 x 500 mm
Épaisseur des plaques	10 à 320 mm

Ne se désagrège pas dans l'eau bouillante (test de 3 heurs)